CORE MACHINE LEARNING

An Introduction to Vision-Language Modeling

June 05, 2024

Abstract

Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.

Download the Paper

AUTHORS

Written by

Florian Bordes

Richard Pang

Anurag Ajay

Alexander C. Li

Adrien Bardes

Suzanne Petryk

Oscar MaƱas

Zhiqiu Lin

Anas Mahmoud

Bargav Jayaraman

Mark Ibrahim

Melissa Hall

Yunyang Xiong

Jonathan Lebensold

Candace Ross

Srihari Jayakumar

Chuan Guo

Diane Bouchacourt

Haider Al-Tahan

Karthik Padthe

Vasu Sharma

Hu Xu

Ellen Tan

Megan Richards

Samuel Lavoie

Pietro Astolfi

Reyhane Askari

Jun Chen

Kushal Tirumala

Rim Assouel

Mazda Moayeri

Arjang Talattof

Kamalika Chaudhuri

Zechun Liu

Xilun Chen

Quentin Garrido

Karen Ullrich

Aishwarya Agrawal

Kate Saenko

Asli Celikyilmaz

Vikas Chandra

Publisher

arXiv

Research Topics

Core Machine Learning

Related Publications

June 11, 2025

ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

Aaron Foss, Chloe Evans, Sasha Mitts, Koustuv Sinha, Ammar Rizvi, Justine T. Kao

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.